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With several essential issues in concurrent green initiatives—concurrent 
payments for environmental services in particular—identified and reviewed, this 
chapter turns to two specific concurrent green initiatives in the USA. On the one 
hand, we intend to show empirical evidence for spillover effects between the two 
initiatives. On the other hand, we provide some technical details (e.g., models, 
procedures) for how we arrive at the conclusion for the purpose of classroom 
teaching or education.

3.1 � Two major green initiatives
The Conservation Reserve Program (CRP), authorized by the 1985 Farm Security 
Act and operated by the US Department of Agriculture (USDA hereafter), aims 
to retire environmentally sensitive land from agricultural production for 10–15 
years (Riley, 2004). Such sensitive land is mainly located in highly erodible 
places. The central agri-environmental policy in the USA before 2002 used 
funds to pay retired farmers and low-income farmers (Claassen et al., 2008). The 
CRP has successfully reached its aims of preserving soil, water, and wildlife. For 
instance, the CRP has led to decreased cultivated acreage from 26% of the land 
area to 8% in Goodwin Creek, Mississippi. Perennial grasses established through 
the CRP have significantly improved infiltration and soil quality relative to con-
ventional cropping systems at the Mark Twain Lake/Salt River Basin, Missouri. 
Substantial cropland area has been converted to grass or forest through the CRP 
at Yalobusha River and Topashaw Creek, Mississippi (Richardson et al., 2008). 
The CRP also benefits wildlife and fish (Gray & Teels, 2006).

The Environmental Quality Incentives Program (EQIP) was created in 1996 
(via the 1996 Farm Bill) by consolidating several programs related to cropland 
and grazing land. Administered by Natural Resources Conservation Service 
(NRCS), the EQIP intends to pay agricultural producers to adopt environmentally 
friendly practices on their farmlands—i.e., lands that remain in production. So the 
EQIP is a working-land program and has cost-sharing for specific conservation 
practices (Ogg & Keith, 2002). Recent years, however, have witnessed increases 
in funding for working-land programs (e.g., EQIP) relative to land retirement pro-
grams (e.g., CRP). EQIP and CRP are concurrent payments for environmental 
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services (PES) programs according to the 2018 Farm Bill amendments, which 
explicitly “allow[s] land enrolled in CRP during the last year of the CRP contract 
to be enrolled in the Environmental Quality Incentives Program” (Federal regis-
ter, 2019). In this situation, there exists a substantial potential for spillover effects 
between CRP and EQIP.

3.2 � Potential spillover effects between CRP and EQIP
As CRP and EQIP are large US agri-environmental programs, we searched 
the Web of Science under the keyword in this format “((Conservation Reserve 
Program or CRP) and (Environmental Quality Incentives Program or EQIP))” 
while selecting “All fields” (this is the most comprehensive choice compared with 
other alternatives such as “Title” and “Topic”). Then, we reviewed the abstracts 
and keywords of all the selected papers from this search: if both “Conservation 
Reserve Program” (or its acronym CRP) and “Environmental Quality Incentives 
Program” (or its acronym EQIP) occur in the abstract or keyword list, we consider 
it a potential paper addressing EQIP–CRP spillover effects. Otherwise, we skip it. 
Then, for all possible papers, we downloaded and read them in search of evidence 
of spillover effects.

We found 76 papers with publication dates ranging from 2000 to 2021 as 
of December 30, 2021. Of these 76 papers, 16 met a high standard for poten-
tially addressing spillover effects. Out of the 16 articles, three suggest spillover 
effects—at least concurrency—between multiple green initiatives. First, Mishra 
and Khanal (2013) mention that a landowner can explicitly enroll in both pro-
grams, implying that EQIP and CRP meet our concurrent PES definition. Another 
paper indicates explicitly that in the Topashaw Canal watershed, USA, “interest in 
and sign-up for CRP began again in 1997 but dwindled to less than 2000 ha (4,942 
ac) with payments of S20,000 per year once EQIP was initiated in 2002” (Wilson 
et al., 2008), indicating an offsetting spillover effect from EQIP to CRP. The third 
paper (Rossi et al., 2021) states that “Additional field experiments could reveal 
if these stated beliefs reflect the true motivations for farmers’ enrollment in both 
programs,” which implied that farmers have enrolled in both programs. We also 
found an implicit statement: “working-land and land retirement programs play 
complementary roles to reduce the environmental consequences of agricultural 
production” (Lambert et al., 2007), yet we found no discussion of their com-
plementarity. However, no systematic work has been devoted to exploring such 
spillover effects.

Below are all 16 papers that potentially address EQIP–CRP spillover effects:

Claassen, R., Cattaneo, A., & Johansson, R. (2008). Cost-effective design of agri-
environmental payment programs: U.S. experience in theory and practice. Ecological 
Economics, 65(4), 737–752.

Rossi, G. D., Hecht, J. S., & Zia, A. (2021). A mixed-methods analysis for improving farmer 
participation in agri-environmental payments for ecosystem services in Vermont, USA. 
Ecosystem Services, 47, 101223.
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Frimpong, E. A., Lee, J. G., & Ross-Davis, A. L. (2007). Floodplain influence on the cost 
of riparian buffers and implications for conservation programs. Journal of Soil and 
Water Conservation, 62(1), 33–39.

Gray, R. L., & Teels, B. M. (2006). Wildlife and Fish Conservation Through the Farm Bill. 
Wildlife Society Bulletin, 34(4), 906–913.

Hess, G. R., Campbell, C. L., Fiscus, D. A., Hellkamp, A. S., McQuaid, B. F., Munster, 
M. J., Peck, S. L., & Shafer, S. R. (2000). A Conceptual Model and Indicators for 
Assessing the Ecological Condition of Agricultural Lands. Journal of Environmental 
Quality, 29(3), 728–737.

Lambert, D. M., Sullivan, P., Claassen, R., & Foreman, L. (2007). Profiles of US farm 
households adopting conservation-compatible practices. Land Use Policy, 24(1), 72–88.

Mishra, A. K., & Khanal, A. R. (2013). Is participation in agri-environmental programs 
affected by liquidity and solvency? Land Use Policy, 35, 163–170.

Medina, G., Isley, C., & Arbuckle, J. (2021). Promoting sustainable agriculture: Iowa 
stakeholders’ perspectives on the US Farm Bill conservation programs. Environment, 
Development and Sustainability, 23(1), 173–194.

Mutandwa, E., Grala, R. K., Grado, S. C., & Munn, I. A. (2016). Family Forest Owners’ 
Familiarity with Conservation Programs in Mississippi, USA. Small-Scale Forestry, 
15(3), 303–319.

Ogg, C. W., & Keith, G. A. (2002). New Federal Support for Priority Watershed 
Management Needs. JAWRA Journal of the American Water Resources Association, 
38(2), 577–586.

Reimer, A. P., & Prokopy, L. S. (2014). Farmer Participation in U.S. Farm Bill Conservation 
Programs. Environmental Management, 53(2), 318–332.

Richardson, C. W., Bucks, D. A., & Sadler, E. J. (2008). The Conservation Effects 
Assessment Project benchmark watersheds: Synthesis of preliminary findings. Journal 
of Soil and Water Conservation, 63(6), 590–604.

Riley, T. Z. (2004). Private-land habitat opportunities for prairie grouse through federal 
conservation programs. Wildlife Society Bulletin, 32(1), 83–91.

Tumeo, M. A., Mauriello, D. A., Sadeghi, A. M., & Meekhof, R. (2000). Case Studies 
on the Application of Adaptive Risk Analysis to USDA’s Resource Conservation 
Programs. In Y. Y. Haimes & R. E. Steuer (Eds.), Research and practice in multiple 
criteria decision making (pp. 492–509). Springer.

Tyndall, J. (2021). Prairie and tree planting tool—PT2 (1.0): A conservation decision 
support tool for Iowa, USA. Agroforestry Systems, 1–16.

Wilson, G. V., Shields, F. D., Bingner, R. L., Reid-Rhoades, P., DiCarlo, D. A., & Dabney, 
S. M. (2008). Conservation practices and gully erosion contributions in the Topashaw 
Canal watershed. Journal of Soil and Water Conservation, 63(6), 420–429.

3.3 � Empirical data collection and analysis
We obtained EQIP data in 2018 on a county basis from the USDA (USDA 
Farm Production and Conservation Business Center, 2020). We downloaded 
county-level CRP data in 2018 from the USDA Farm Service CRP program and 
statistics reporting portal (https://www​.fsa​.usda​.gov​/programs​-and​-services​/con-
servation​-programs​/reports​-and​-statistics​/conservation​-reserve​-program​-statis-
tics​/index) on April 6, 2020. The income data were downloaded from the US 

https://www.fsa.usda.gov
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Census—SAIPE (Small Area Income and Poverty Estimates) and the related links 
(https://www​.census​.gov​/data​/datasets​/2018​/demo​/saipe​/2018​-state​-and​-county​
.html and https://www​.census​.gov​/programs​-surveys​/saipe​.html). The farmland 
data were downloaded from the USDA—Farm Service Agency (https://www​.fsa​
.usda​.gov​/news​-room​/efoia​/electronic​-reading​-room​/frequently​-requested​-infor-
mation​/crop​-acreage​-data​/index). The population data were downloaded from the 
US Census Bureau (https://www​.census​.gov​/data​/tables​/time​-series​/demo​/popest​
/2010s​-counties​-total​.html).

After merging the datasets by county, we generated a dataset that contains 
the following variables: CRP2018 (y for area enrolled in CRP; acres), EQIP_
Area (x1 for contracted land in EQIP; acres), Farm_Area (x2 for total county 
farmland; acres), M_HH_inc (x3 for county median household income in 2018; 
$), and Pop2018 (x4 for county population in 2018). As a preliminary initiative 
to handle spatial autocorrelation in the dataset, we first randomly selected 25% 
of the data out of 3,108 records, resulting in a dataset of 730 records for data 
analysis. According to the United Nations’ Sustainable Livelihoods Framework, 
human, social, natural, physical, and financial capitals possessed by an entity 
(e.g., farm, household, community) play a crucially important role in relevant 
livelihood decisions. Using the acres of EQIP enrollment as dependent variable 
(y), we explain its variability using a set of variables that represent such capitals: 
the acres of CRP enrollment (X1), total farmland (X2, acres), median household 
income (X3), and population size (X4). The multivariate linear regression takes the 
following form (Equation 3.1):

	 y b b X b X e
i

i i
= + + +

=
å0 1 1

2

4

	 (3.1)

where b0 is the intercept, b1 is the coefficient of X1 (contracted land in EQIP; 
acres), and bi is the coefficient of the three control variables Xi (i = 2, 3, and 4) that 
contribute to explaining the variability in the dependent variable (land enrolled in 
CRP; acres). As shown later, the results indicate that under the control of county-
level farmland area, income, and population size, EQIP land had a negative impact 
on CRP enrollment—each acre of EQIP land caused a loss of 0.28 (p < 0.0001) 
acre in CRP enrollment.

We further employed the eigenvector spatial filtering (ESF) method to han-
dle potential biases in parameter estimates due to spatial autocorrelation (Chun, 
2008; Griffith, 2000). Spatial autocorrelation refers to a situation where units that 
are geographically close to one another may have more similar values than those 
that are far apart, which is also known as Tobler’s first law of geography (Tobler, 
1970). If this type of autocorrelation is present in a regression model (e.g., in its 
residuals), then it violates a fundamental assumption in standard statistical analy-
sis: regression residuals should be independent and identically distributed (i.i.d.). 
The violation may give rise to biased parameter estimates, e.g., an increase in 
type I error and falsely rejecting the null hypothesis of no effect.

https://www.census.gov
https://www.census.gov
https://www.census.gov
https://www.fsa.usda.gov
https://www.fsa.usda.gov
https://www.fsa.usda.gov
https://www.census.gov
https://www.census.gov
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Employing the ESF method, we tested various neighborhood sizes from the 
1st- to the 20th-order Queen’s neighborhood as we do not know precisely at what 
spatial scale(s) the residuals are spatially autocorrelated. At each neighborhood 
size, we generated the corresponding spatial weights matrix.

Following the relevant literature (An et al., 2016; Chun et al., 2016), we 
calculated the eigenvalues (ranked in descending order) and the corresponding 
eigenvectors under each neighborhood size (i.e., 1, 2 … up to 20). According 
to eigenvector selection literature (Hughes & Haran, 2013; Pace et al., 2013), a 
relatively small subset of top eigenvectors (e.g., top 50–100 for a dataset with 
2,500 records; Hughes & Haran, 2013) should suffice as regressors for filtering out 
spatial autocorrelation. We name this procedure the “top k method” for illustration 
purposes, where it is essential to determine the value of k. One way to choose k is 
to select the top k eigenvectors corresponding to standardized eigenvalues greater 
than 0.7 (we name it the 0.7 rule; Hughes & Haran, 2013).

Alternatively, the top k eigenvectors can be determined by the “0.25 rule” 
(as described for illustration convenience; Chun et al., 2016), and the number 
thus chosen should be more than the subset defined by the 0.7 rule. Note that the 
0.25 rule states that k can be determined if EVk/EVmax  ≥ 0.25 for positive spatial 
autocorrelation, where EVmax is the largest eigenvalue among all n eigenvalues 
(Chun et al., 2016). We show at each neighborhood size, the maximum eigen-
value, a quarter of the maximum eigenvalue (i.e., 0.25× maximum eigenvalue), 
and the number of eigenvectors with their eigenvalue greater than 0.25× maxi-
mum eigenvalue (Table 3.1). For instance, at neighborhood = 2 (the second-order 
neighborhood is chosen for eigenvector calculation), there are 290 eigenvectors 
with eigenvalues greater than 5.23 (here 5.23 = 0.25 × 20.91, where 20.91 is the 
maximum eigenvalue).

Therefore, we picked up the top k eigenvectors for the regression based on the 
0.25 rule. The regression model is shown in Equation 3.2:

	 y b b x b x b x b x c CEV e
g

k

g g
= + + + + + +

=
å0 1 1 2 2 3 3 4 4

1

	 (3.2)

Based on Equation 3.2, we calculated regression residuals, Moran’s I value, and 
the associated Z score at each of the 20 neighborhood choices. Following Chun et 
al. (2016), we chose the appropriate model (corresponding to a specific neighbor-
hood size) that (1) reduces spatial autocorrelation to an acceptable level (e.g., |z| is 
less than 1.64 for alpha = 0.10) and (2) has the best (or close to the best) model fit 
in terms of, e.g., minimized AIC or maximized adjusted R2. The first rule prevails 
if these two rules cannot be satisfied simultaneously. When multiple models (each 
for a unique neighborhood size) satisfy these two rules, we choose the one with 
fewer eigenvectors for higher degrees of freedom.

The results based on Equation 3.2 indicate that at the tenth order, the spatial 
autocorrelation of residuals was nearly removed with |z| = 0.54 (Table 3.2). At this 
neighborhood size (i.e., the tenth order) with the least |z| score, k was determined 
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to be 15 based on the above 0.25 rule. Using these top 15 eigenvectors as spatial 
filters, the area of EQIP land had a negative coefficient of −0.2242 (p < 0.0001) 
(Table 3.3, the second model).

To examine whether the model based on a subset of 730 records (Table 3.3) 
can reduce the spatial autocorrelation to an acceptable level, we also calculated 
the Moran’s I value of this model at four neighborhood levels, i.e., the 5th, 10th, 
15th, and 20th. It turns out the residuals were still quite spatially autocorrected 
except at the 15th level (z = 1.5672; Table 3.4). This suggests that the subsam-
pling method may not effectively reduce spatial autocorrelation.

We used the stepwise selection method to choose spatial filters (Chun et al., 
2016; Chun & Griffith, 2011; Griffith, 2000) to verify the above results. Under 
this method, we used stepwise regression to select a subset of s significant eigen-
vectors (at alpha = 0.10) out of the top k eigenvectors. In our regression model 
(Equation 3.3), the top k eigenvectors—candidate spatial filters that were chosen 
based on the 0.25 rule—entered the stepwise procedure (note that X1 through X4 
were forced to be included). These s eigenvectors were then used as spatial filters 
in the regression model that corresponds to a specific neighborhood size:

Table 3.2 � Spatial autocorrelation of regression residuals for CRP and EQIP, USA

Neighborhood 
order

Under normality assumption Under randomization assumption

Moran’s I a p-value Z score Moran’s I p-value Z score

1 −0.0946 1.0000 −8.9821 −0.0946 1.0000 −9.0694
2 −0.0515 1.0000 −8.6582 −0.0515 1.0000 −8.7351
3 −0.0137 0.9994 −3.2550 −0.0137 0.9995 −3.2843
4 −0.0270 1.0000 −8.5057 −0.0270 1.0000 −8.5746
5 −0.0253 1.0000 −9.8717 −0.0253 1.0000 −9.9512
6 −0.0130 1.0000 −5.9994 −0.0130 1.0000 −6.0484
7 −0.0044 0.9877 −2.2476 −0.0044 0.9883 −2.2657
8 0.0070 0.0000 4.6093 0.0070 0.0000 4.6472
9 0.0066 0.0000 4.9065 0.0066 0.0000 4.9455
10 −0.0010 0.7033 −0.5339 −0.0010 0.7047 −0.5380
11 −0.0086 1.0000 −7.2702 −0.0086 1.0000 −7.3251
12 −0.0113 1.0000 −10.5581 −0.0113 1.0000 −10.6381
13 −0.0166 1.0000 −17.0326 −0.0166 1.0000 −17.1610
14 −0.0185 1.0000 −20.6911 −0.0185 1.0000 −20.8460
15 −0.0190 1.0000 −22.9488 −0.0190 1.0000 −23.1202
16 −0.0174 1.0000 −22.5684 −0.0174 1.0000 −22.7360
17 −0.0137 1.0000 −18.9725 −0.0137 1.0000 −19.1124
18 −0.0088 1.0000 −12.9496 −0.0088 1.0000 −13.0441
19 −0.0046 1.0000 −6.9333 −0.0046 1.0000 −6.9840
20 −0.0015 0.9829 −2.1183 −0.0015 0.9836 −2.1336

Notes: a When calculating the spatial weights matrix, the few records (counties) in California were 
dropped as most counties in California did not have both CRP and EQIP implemented simultaneously, 
leaving few scattered counties in our dataset. Also in order to calculate Moran’s I, counties without a 
residual were assigned the average of residuals of all residuals.
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	 y b b x b x b x b x c CEV e
g

s

g g
= + + + + + +

=
å0 1 1 2 2 3 3 4 4

1

	 (3.3)

where xi (i = 1, 2, 3, and 4) are the four predictor variables defined in Equation 
3.1, and CEVg and cg (g = 1, 2, 3, … s; s ≤ k) are the eigenvectors that are chosen 
as spatial filters and the associated coefficients, respectively. Note that the s cho-
sen eigenvectors are not necessarily the top s eigenvectors; therefore, CEVg in 
Equation 3.3 could differ from CEVg in Equation 3.2.

The regression results from Equation 3.3 also indicate that the tenth-order 
neighborhood is also acceptable with |z| = 1.4777 (p = 0.0697, not shown in a table), 
confirming the outcome regarding the tenth-order neighborhood by Equation 3.2. 
For the brevity purpose, we skip the Moran’s I and other statistics for this method 
as we did for the top k method (Table 3.1).

The coefficient for the area of EQIP land (EQIP_Area) is –0.2240 (p < 0.0001; 
Table 3.5), slightly different from that from Equation 3.2 (–0.2242; p < 0.0001; 
Table 3.3). Later we adopted the average of the two coefficients when calculating 
the impacts of EQIP on CRP: coefficient = [(–0.2242) + (–0.2240)]/2 = –0.2241, 

Table 3.4 � Spatial autocorrelation of regression residuals in the baseline model

Neighborhood 
order

Under normality assumption Under randomization assumption

Moran’s I p-value Z score Moran’s I p-value Z score

5 0.0450 0.0000 17.9028 0.0450 0.0000 18.2122
10 0.0140 0.0000 11.3534 0.0140 0.0000 11.5468
15 0.0009 0.0616 1.5417 0.0009 0.0585 1.5672
20 0.0034 0.0000 6.5202 0.0034 0.0000 6.6235

Notes: The results are based on the baseline model with a subset of n = 730 records but no eigenvectors, 
i.e., the first model in Table 3.2.

Table 3.5 � Regression results with the ESFs selected by stepwise regression

Variable Coefficient t-score p-value Variance inflation

Intercept 7,447.4780 5.23 <0.0001 0
EQIP_Area −0.2240 −7.90 <0.0001 1.3000
Farm_Area 0.0172 14.02 <0.0001 1.9338
M_HH_Inc −0.0440 −1.65 0.0981 1.2138
Pop2018 −0.0035 −2.26 0.0238 1.1413
V1 212,815 9.59 <0.0001 1.6214
V6 −75,696 −4.27 <0.0001 1.0488
V9 −66,165 −3.71 0.0002 1.0308
V10 62,279 3.60 0.0003 1.0308
V11 −96,370 −5.43 <0.0001 1.0373
V12 45,740 2.58 0.0099 1.0247
V14 −49,891 −2.86 0.0042 1.0182
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rounded to –0.22. When calculating the average coefficient, we did not include the 
coefficient from Equation 1, i.e., –0.2803 (i.e., the one from the n = 730 sample; 
Table 3.3), simply because we preferred a conservative estimate.

3.4 � Potential reasons for the negative spillover effects
There is an offsetting spillover effect from EQIP to CRP, which can be explained 
as follows. First, we regard land scarcity as a top influential variable. The positive 
coefficient of total farmland (0.0172 with p < 0.0001; Table 3.5) indicates more 
enrollment in CRP in counties with more farmland. Second, land-use competition 
may also—at least partially—account for this offsetting impact. Both CRP and 
EQIP target farmland, sharing goals to preserve water, soil, and wildlife habi-
tat—so increases in enrollment of one program may lead to decreases in that of 
the other.

Last but not least, facing two choices of CRP and EQIP that are competitive in 
many instances, landowners choose the more profitable one. As CRP participants 
must retire the enrolled land, the land then has no (or very little) agricultural 
income. The EQIP, instead of retiring the land, provides money to landown-
ers for whatever environmentally beneficial practices they adopt. This operation 
implies that landowners still receive agricultural income. Furthermore, the EQIP 
pay rate was higher than that of the CRP, offering an additional incentive for 
landowners to participate in the EQIP rather than the CRP. All these factors may 
contribute to the declining CRP enrollment trend since 2007 (Figure 3.1) and 
explain why the 2018 CRP enrollment was far below the cap designated by the 
2018 Farm Bill.

In 2018, 22 million acres of land were enrolled in CRP, far less than the cap of 
27 million acres established by the 2018 Farm Bill (USDA Farm Service Agency, 

Figure 3.1  �Dynamics of CRP-enrolled acres in the USA between 1986 and 2018 (Data 
source is USDA Farm Production and Conservation Business Center, 
Economics and Policy Analysis Division, Data Services Branch, County-level 
CRP, and EQIP dataset in the USA, 2020).
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2019, p. 9). It is reported that all CRP land can generate a large amount of eco-
logical benefits, including reduction of soil erosion (accumulative number) at the 
magnitude of 9 billion tons and sequestration of 49 million tons of carbon dioxide 
(equal to taking 9 million cars off the roads) (USDA Farm Service Agency, 2019). 
Our data show that between 2009 and 2020, the EQIP land was 20.2314 million 
acres (8.1874 million hectares) on average, which may have reduced CRP land 
by 4.4509 million acres (1.8012 million hectares) or 20.23% (100% × 4.4509 
million/22 million) total CRP land. Given such data, the loss of CRP land due to 
its competitor EQIP (4.4509 million acres) is equivalent to increasing soil erosion 
by 1.8208 billion tons and carbon dioxide release by 9.9134 million tons. The 
increased release of greenhouse gas alone would be equivalent to putting 1.8208 
million cars back on roads (Table 3.6).

3.5 � Area-based conservation experiment
As discussed in Section 1.4, the conservation community has long established 
and maintained protected areas. Protected areas are considered an essential 
type of green initiative, which is credited to be the foundation of biodiversity 
conservation. The conservation community has recently started recommending 
area-based conservation measures for conservation purposes (Jonas et al., 2014; 
Maxwell et al., 2020).

We experimented to explore whether and how we can leverage the spillover 
effects to save costs while maintaining the total acres enrolled in CRP and EQIP. 

Table 3.6 � Potential loss of CRP land area due to EQIP enrollment over time

Year EQIP (million 
acres)a

Lost CRP 
(million acres)b

Soil erosion 
loss (billion)c

Carbon loss 
(million)

Cars back 
(million)

2009 23.1752 5.0985 2.0858 11.3558 2.0858
2010 24.1148 5.3053 2.1703 11.8163 2.1703
2011 22.4588 4.9409 2.0213 11.0048 2.0213
2012 24.3016 5.3464 2.1871 11.9078 2.1871
2013 24.4184 5.3721 2.1977 11.9650 2.1977
2014 19.4651 4.2823 1.7519 9.5379 1.7519
2015 18.6048 4.0930 1.6744 9.1163 1.6744
2016 15.7342 3.4615 1.4161 7.7098 1.4161
2017 17.0746 3.7564 1.5367 8.3665 1.5367
2018 17.7341 3.9015 1.5961 8.6897 1.5961
2019 18.0222 3.9649 1.6220 8.8309 1.6220
2020 17.6730 3.8881 1.5906 8.6598 1.5906
Average 20.2314 4.4509 1.8208 9.9134 1.8208

Notes: 
a Data source: https://www​.nrcs​.usda​.gov​/Internet​/NRCS​_RCA​/reports​/fb08​_cp​_eqip​.html.
b �The lost CRP areas are estimated based on our modeled correlation, which is 22% of the total EQIP 

area. The data come from the dataset from the USDA (USDA Farm Production and Conservation 
Business Center, 2020).

c The news release from the USDA (USDA Farm Service Agency, 2019).

https://www.nrcs.usda.gov
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We first convert various proportions of EQIP land located in areas eligible for 
both programs back to the CRP. The rationale is that some landowners may quit 
their land from the CRP—though more ecologically appropriate under this pro-
gram—but enroll such land in the EQIP for its higher pay rate. The experiment 
begins with 22.0 and 18.02 million acres of CRP and EQIP enrollment in 2019, 
respectively, which stands as the baseline. Based on our finding in Section 3.3, 
each acre of EQIP land may lead to a reduction of 0.22 acre in CRP land, which 
suggests that 20.23 million EQIP lands (the average from 2009 to 2020) should 
have reduced CRP enrollment at the magnitude of 20.23 × 0.22 = 4.5 million 
acres.

Next, we consider five scenarios: zero (pre-pandemic, baseline), 25% (4.5 × 
25% = 1.125 million acres reallocated from EQIP to CRP), 50%, 75%, and up to 
100% restoration (all 4.5 million acres reallocated from EQIP to CRP; Table 3.7). 
As we move the same amount of EQIP acres to the CRP, the total acres in both 
programs remain the same, but the amount of total payment declines simply 
because the pay rate of CRP ($76.36/acre) is lower in comparison to that of EQIP 
($137.98/acre). The results show that 2–7% of the total expenses would have 
been saved while still meeting the goal of constant acreage of both EQIP and CRP 
(Table 3.7).

If there are no spillover effects, the green efforts are invested in Figure 3.2A. 
However, our data analysis found that in areas with both CRP and EQIP eligible, a 
certain amount of land (22%, the dotted oval in Figure 3.2B), which is best for the 
CRP, has switched to the EQIP because of its higher pay rates and other benefits 
(Figure 3.2B). As a result, the total amount of land for CRP and EQIP remains 
unchanged, but the total ecological benefits will likely decrease, and the total pay-
ments for both programs will increase.

What is the application of this finding to landscape design and engineering? 
As we did in the China case (Section 6.6), we suggest changing the enrollment 
rules to some degree, such that some EQIP efforts in the middle section—the dot-
ted circle—can be reallocated to EQIP-only areas (Figure 3.2C). As a result, the 
total area of both CRP and EQIP enrollment remains unchanged, but we get the 
effort (in the middle area) reallocated to the best ecological benefits. The other 
benefit is that through such a reshuffle of green efforts, we can allow a 2–7% 
budget cut for the whole USA but still keep the total area of both CRP and EQIP 
unchanged. Budget readjustments are particularly important at times of crisis, 
such as COVID-19.

Appendix: Moran’s I calculation
We present a detailed description of how to calculate the Moran’s I value at the 
various neighborhood definitions that are shown in Table 3.2. For data and related 
code, visit our website http://www​.complexties​.org​/book​/green​_initiative, and 
go to this subfolder EQIP-CRP-data/Moran-I/. Readers without interest in such 
detail scan skip this section.

http://www.complexties.org
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Step 1: Data preparation

	 1.1	 Create folders named NonSpatial, Results, and Shapefiles; move Out​
_no​_EV​​.csv into the Nonspatial folder.

	 1.2	 Import out​_data​_1​​.csv into ArcMap, join with county layer by FIPS_co. 
Extract the matching records as a new shapefile named county​_outdata​
.​shp under the Shapefiles folder.

	 1.3	 Fill in missing residuals in each table from average of all residuals (Step 
1 in MoranI.R)

Step 2: Calculate the neighborhood for each order specified in the table names 
(Step 2 in MoranI.R)

Step 3: Calculate Moran’s I.
We calculate Moran’s I values for regression residuals and related statis-

tics (Step 3 in MoranI.R); two tables are found in the Results folder (MoranI​
_nor​.​csv for Moran’s I under normality and MoranI​_ran​.​csv for Moran’s I 
under randomization).

Step 4: Prepare a table for non-spatial model (Step 4 in MoranI.R)
4.1: merge the non-spatial table with the full county layer (3,106 counties)
4.2: fill in missing residuals in each table from an average of all residuals

C
C C

E

EC E
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CE

C E

C E
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E
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E E

E
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C C
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Effort invested on EQIP Effort invested on CRP
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C

Figure 3.2  �Initiative efforts invested in EQIP and CRP if (A) there are no spillover effects, 
(B) there is a spillover effect, and (C) the influenced EQIP effort is relocated 
to EQIP-only areas. The left, middle, and right dotted areas represent CRP 
eligible only areas, CRP and EQIP simultaneously eligible areas, and EQIP 
eligible only areas.

http://www.Out_no_EV.csv
http://www.Out_no_EV.csv
http://www.out_data_1.csv
http://www.county_outdata.shp
http://www.county_outdata.shp
http://www.MoranI_nor.csv
http://www.MoranI_nor.csv
http://www.MoranI_ran.csv
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Step 5: Calculate Moran’s I for regression residuals and related statistics (Step 5 
in MoranI.R); two tables are found in the Results folder (MoranI​_Nsp​_nor​
.​csv for Moran’s I under normality and MoranI​_Nsp​_ran​​.csv for Moran’s I 
under randomization)
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