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Optimal rainfall threshold for monsoon
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Climate change affects Indian agriculture, which depends heavily on the spatiotemporal distribution of
monsoon rainfall. Despite the nonlinear relationship between crop yield and rainfall, little is known
about the optimal rainfall threshold, particularly for monsoon rice. Here, we investigate the responses
of rice yield to monsoon rainfall in India by analyzing historical rice production statistics and climate
data from 1990 to 2017. Results show that excessive and deficit rainfall reduces rice yield by 33.7%
and 19%, respectively. The overall optimal rainfall threshold nationwide is 1621 ± 34mm beyond
which rice yield declines by 6.4 kg per hectare per 100mm of rainfall, while the identifiable thresholds
vary spatially across 14 states. The temporal variations in rice yield are influenced by rainfall anomalies
featured by El Niño-Southern Oscillation events.

More than 50% of the world’s population obtain their prime calories from
rice1. India’s rice production is pivotal not only for its agriculture-based
economy but also for global food security. Ranking second followingChina,
India contributes to nearly 20% of the total rice production of the world
annually2. Harvesting Kharif rice (i.e., Kharif monsoon rice) accounts for
85% of total rice production nationwide. During 2021–2022, India pro-
duced 127.93million tons (MT) of rice; nearly 1.2 billion people depend on
domestically produced food and approximately 150 countries rely on rice
exports from India3. During the global food price crisis in 2007–2008 when
the world’s wheat production failed, India banned rice exports due to food
security concerns, triggering a cascade of global export bans and food riots3.
Understanding Kharif monsoon rice yield during the monsoon season
(June–November) in India thus is of global relevance to food provision and
sustainable development.

Rice production, particularly in tropical regions, is critically dependent
on climate variability. Extreme climate events alone can contribute 32–39%
of the crop yield variability at the planetary scale4. The increasing level of
extreme climate events is evident across climate zones, disrupting the

historical crop seasonal patterns and agricultural productivity5–8. Unpre-
cedented greenhouse gas emission has exacerbated global warming
accompanied with more frequent extreme events, including heavy rainfall
causing floods, severe tropical cyclones, droughts, and desertification6,7,9,10.
Research shows that, among meteorological variables, rainfall and air
temperature explain the maximum variability of crop production11.

In India,Kharifmonsoon rice yielddeclined in65%of its regionsdue to
climate variability12. Among the major crops in the country, monsoon-
dependent crops aremore sensitive to changes in and variability of rainfall13,
compared toother crops such aswinter crops14. Rainfall variability can cause
awide rangeof riceproductionfluctuation (+2% ~−11%)over the country,
with negative impacts potentially outweighing the benefits of the increased
total rainfall13. Meanwhile, studies suggest that excessive rainfall during the
monsoonmonths has adversely affected crop yield in India15. Such negative
effects are more evident and prominent in the northeast regions of India
where heavy rainfall dominates the wet season16. The Indian monsoon is
sensitive to the El Niño Southern Oscillation (ENSO), which can have
profound impacts on rice production in India and global food supply17–19.
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ENSO features climate modes involving changes in sea surface temperature
in the central and eastern-central Pacific Ocean, which can cause global
climate variation20,21 and modify rainfall distribution in India.

Sensitivity assessment and quantification of the effect of climate
variability on crop yield is of utmost importance for adopting resilient
agricultural strategies and improving food security9,10,22. Precipitation,
especially rainfall during the growing season, is a critical factor affecting the
growth and yield of crops, particularly Kharif monsoon rice11. The amount
and distribution of rainfall throughout the growing season are vital for
healthy plant growth, development, and ultimately successful crop pro-
duction. The Kharif monsoon rice plant can generate high yield when it
receives an adequate amount of rainfall (1200–1400mm) during the
growing season23. Existing literature suggests that rice yield responds non-
linearly to rainfall, which manifests declining rice yield when rainfall devi-
ates from an optimal threshold for rice growth3,24–26.

Despite the recognition of such a nonlinear relationship,most previous
efforts have focused merely on quantifying the decline of rice yield under
excessive rainfall, but there is lack of knowledge about the response of rice
yield to rainfall anomalies, including both deficit and excessive extremes, as
well as the optimum threshold of rainfall for crop yield. A few studies have
examined wheat production in the United States27,28, but the threshold,
beyond which more rainfall starts to adversely affects Kharif monsoon rice
yield, remains unknown, especially when compared with the impact of
drought11. A thorough assessment to delimit the rainfall threshold is critical
to understand the negative impact of heavy rainfall on rice yield. This study
aims to investigate the impact of rainfall on Kharif monsoon rice across all
districts of India from 1990 to 2017, seeking to identify the optimal rainfall
threshold (ORT) over the entire country and across regions where crop
productivity is more susceptible to excess rainfall. Furthermore, this study
provides key information for food security management in the world with
an uncertain climate.

Results
Trends and spatial variability of Kharif monsoon rice and rainfall
During 1990–2017, the annual average crop area and production of Kharif
monsoon rice in India was 41.17 million hectares (Mha) and 87.66MT,
respectively (Supplementary Table 1). Overall, rice production increased
from 71.37MT in 1990 (based on a total cultivated area of 40.83Mha) to
113.28MT in 2017 (based on a total cultivated area of 42.49Mha), repre-
senting a growth rate of approximately 58.7% (52.5% on the unit area basis)
over the 28-year period. Spatially, thewestern states includingMaharashtra,
Madhya Pradesh, Gujrat, Rajasthan held smaller rice areas and generated
lower yield than the eastern states (Supplementary Fig. 1a, b, d, e). Regarding
the percentage change of rice area, rice growing areas in the northern states
expanded more rapidly in recent years, compared to the southern states
(SupplementaryFig. 1c, f). In this study,we focuson20 states that holdmore
than 95% of national Kharif monsoon rice production (Supplementary
Table 2), including Andhra Pradesh, Assam, Bihar, Chhattisgarh, Gujrat,
Haryana, Himachal Pradesh, Jharkhand, Karnataka, Kerala, Madhya Pra-
desh, Maharashtra, Odisha, Punjab, Rajasthan, Tamil Nadu, Telangana,
Uttar Pradesh, Uttarakhand, and West Bengal (Supplementary Fig. 2).
Notably, West Bengal (14.5%), Uttar Pradesh (13.38%), and Punjab
(10.89%) contribute the highest accumulated total Kharif monsoon rice
production during 1990 to 2017.

The overall growth rate of rice yield in India had increased from
1669.73 kg ha−1 to 2418.16 kg ha−1 during 1990–2017 (Supplementary
Table 1). The annual yield rate had increased bymore than34 kg ha−1 year−1

in Andhra Pradesh, Bihar, Jharkhand, Rajasthan, Tamil Nadu, Telangana,
andWest Bengal (Supplementary Fig. 3). The least growth performed states
of rice production were Uttarakhand (5.25 kg ha−1 year−1), Maharashtra
(9.92 kg ha−1 year−1), Himachal Pradesh (13.48 kg ha−1 year−1), Haryana
(13.72 kg ha−1 year−1). Based on the 28-year average rainfall in growing
season (June–November), more rainfall was received in districts along the
Western Ghat mountain in western (2300–4240mm), central
(944–1720mm) and eastern India (1720–3200mm); less rainfall

(192–943mm) was received in west non-coastal areas (Maharashtra, Guj-
rat, Kerala, Rajasthan), north (Harina, Punjab), and south areas (Andrah
Pradesh, Tamil Nadu) (Supplementary Fig. 4a). The Gangetic plain and
southern states of India have recorded relatively high rice yield, more than
2000 kg ha−1 (Supplementary Fig. 4b).

To spatially explore the strength and direction of the relationship
between rice yield and rainfall, we quantified the correlation coefficient over
space and timeat thedistrict level during1990–2017 (SupplementaryFig. 5).
Among the 384 samples (i.e., districts of India), 238 (63.3%) revealed
positive correlationsbetween rice yield and rainfall and138 (36.7%)negative
correlations. A broader region in central India exhibited the strongest
positive correlation, covering regions in Chhattisgarh, Odisha, Madhya
Pradesh, Telangana, and the western part of Karnataka (r ≥ 0.4, p < 0.05).
However, negative correlations (r ≥ 0.4, p < 0.05) were observed in Andhra
Pradesh, Assam,Haryana,Himachal Pradesh, Kerala, NorthUttar Pradesh,
Punjab, Tamil Nadu, West Bengal, and West Maharashtra.

Impacts of Rainfall on Kharif monsoon rice yield
We draw two scenarios to estimate the impact of rainfall on rice yield
(Fig. 1), with one excluding long-run trends (baseline/counterfactualmodel,
Supplementary Table 3) and the other including rainfall variables (full
model, Supplementary Table 4). The rainfall had a significant positive effect
(p ≤ 0.001), but its extreme had a negative effect (p ≤ 0.001) on rice yield
(Supplementary Table 4). The proportion of the variance explained by fixed
effects in total variance is 6.8% (marginal R2), and the share of the variance
explained by both fixed and random effects in total variance is 77.2%
(conditional R2). A high level of variance explained by themodel (R2 = 0.77,
p < 0.001) and accurate historical yield predictions indicate that themodel is
relatively reliable for predicting rice yield (Supplementary Fig. 6). After
including temperature, another main climate variable, the effects remain
robust, demonstrating that rainfall plays a critically important role in rice
production in India (Table 1). Relative yield change (RYC) represents the
percentage change in crop yield compared to a reference or baseline yield.
The average yearly RYC from 1990 to 2017 over India is summarized in
Fig. 1b. Across the country, yield losses were more than 3% in the years of
2003 (−5.22%), 2009 (−3.12%), and 2014 (−3.24%), and the most yield
gains were observed in the years of 2008 (3.74%), 2012 (3.44%), and 2014
(4.85%). The spatial distribution of the model-derived total net production
at the district level from1990 to 2017 is depicted in Supplementary Fig. 7. In
comparison to the eastern and southern parts of India, the western region
(including Haryana, Rajasthan, Gujrat, Madhya Pradesh, Maharashtra,
Himachal Pradesh) and eastern Assam tend to experience lost production
due to rainfall.

Optimal rainfall thresholds on relative yield change
The overall optimal rainfall threshold (ORT) value for rice yield for India is
estimated to be 1621 ± 34mm (Confidence Interval: 1587–1655mm) based
on the modeled relationship between the growing-season rainfall and the
overall response of RYC (R2 = 0.34, p < 0.001) across the whole country
(Fig. 2a). The most severe yield reduction under extreme wet conditions
(−33.74%) was much higher than under extreme dry condition (−19%)
(Fig. 2a). The yield declines at a rate of 6.41 kg ha−1 for an increase of every
100mm in rainfall when the level of rainfall exceeds ORT (Supplementary
Table 5). Conversely, the yield drops at a rate of 17 kg ha−1 with a decrease of
every 100mm in rainfall below the ORT. This suggests that there is a
nonlinear relationship between rainfall and Kharif monsoon rice yield in
Indiawithdiminishing returns away theORT.TheORTgradually increased
with the increasing rainfall (r = 0.87, p < 0.001) (Fig. 2b). Specifically, the
average rainfall in the states of Kerala, West Bengal, and Assam are much
higher, and their ORTs are greater than the other states. This observation
underscores the adaptability of current rice cultivars (e.g., use of fertilizer) to
elevated moisture levels to achieve the highest yield capacity27.

By state, for the 14 states with successfully identified thresholds (e.g.,
Maharashtra), the ORT values exhibit substantial heterogeneity over space,
covering a wide range of 544mm (i.e., Haryana) to 2775mm (i.e., Kerala)
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(Supplementary Fig. 8, Supplementary Fig. 9). Above the ORT, rice yield
tends to fall bymore than 15% in some states. Beyond the ORT, an increase
of 100mm of rainfall caused yield losses in the following states in India,
including Kerala (−17.5 kg ha−1), Maharashtra (−38.1 kg ha−1), Karnataka
(−2.4 kg ha−1), Uttarakhand (−5.5 kg ha−1), and West Bengal
(−9.9 kg ha−1). Additionally, some states are not directly negatively
impacted but their rate of yield has decreased compared to the left side of the
inverted-U slope which indicates the positive impact of rainfall at relatively
slower rates (e.g., Assam). Both excessive rainfall and extremely dry con-
ditions lead to yield losses in various states. A decrease of every 100mm in
rainfall below the ORT results in a significant reduction in yield for several
states, such asHaryana, Karnataka, Tamil Nadu, andWest Bengal. The rate
of yield loss ismore than50 kg ha−1 in some states, and ranges 20–50 kg ha−1

in others (e.g., Andhra Pradesh).
Overall, the sensitivity of RYC to rainfall between the two sides ofORT

is−145.45% (which is over 100% inmagnitude), suggesting that increasing

rainfall beyond the ORT flip the impact on rice yield from positive to
negative with an extent of more than 45%. By state, the most sensitive
negative impacts of high rainfall are observed in Kerala, with the number
achieving −290%. Among the 14 states with identified ORT (i.e., invert
U-Shape relationship), four experience stronger impacts of wetter condi-
tions thandrier conditions, includingKarnataka (−105%),Kerala (−290%),
Maharashtra (−159%), and West Bengal (−145%), while the other states
exhibit relatively low levels of sensitivity for wetter conditions.

To further explore ORTs through time, we divided the 28 years into
3-year intervals. Every three years, both the slopes of the regression line on
the left and the right sides of the inverse-U shaped relationship were esti-
mated, and the mean values of all the variables, including yield change and
the percentage of samples over the ORT between the upper and lower CI of
the ORT were collected (Supplementary Table 6). The results from linear
regression show thatwith a rise inORTof 100mm, yield area grows at a rate
of 102 kg ha−1 (RYC = 0.3%), with a strong association (R2 = 0.75, p < 0.01)
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Fig. 1 | Impacts of yearly rainfall on Kharif monsoon rice yield in India. a Actual
yield vs. predicted yield of Kharif monsoon rice in India based on linear mixed-
effectsmodelingwith district-level observations; bChange of yearly Kharifmonsoon

rice yield estimated by rainfall during 1990–2017. The error bar for each year was
calculated based on bootstrap resampling with 1000 repeats, showing the 5–95%
confidence intervals (CIs) for the mean estimate.

Table 1 | Effects of rainfall and temperature on rice yield based on mixed-effects model

Random effects Variance SD

Crop: location 0.2783 0.526

Residual 0.0824 0.2872

Observations R 10,251

Fixed effects Coefficient Standard errors df t-value p Value

Constant 3.01E+03 2.38E+02 2.31E+00 12.649 0.0035 **

Year −3.01E+00 2.38E−01 2.31E+00 −12.664 0.0035 **

Year2 7.56E−04 5.94E−05 2.31E+00 12.724 0.00346 **

Rainfall 4.07E−04 4.00E−05 9.50E+03 10.157 <2E−16 ***

Rainfall2 −7.50E−08 9.60E−09 9.50E+03 −7.81 6.33E−15 ***

Temperature −1.54E−01 9.30E−02 7.65E+03 −1.66 0.09689 .

Temperature2 1.96E−03 1.46E−03 7.67E+03 1.342 0.17967

SD of Rainfall −5.00E−04 4.22E−03 9.32E+03 −0.118 0.90576

SD of Rainfall2 −8.00E−05 1.12E−04 9.34E+03 −0.716 0.47381

AIC BIC R2 (conditional) R2 (marginal) ICC RMSE Sigma

4955.80 5034.06 0.786 0.066 0.771 0.281 0.287

Note: marginal R2 is the variance explained by fixed variables, while conditional R2 is the variance explained by random and fixed variables.
***p < 0.001, **p < 0.05.
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(Supplementary Fig. 10a, b). Additionally, as ORT rises, the proportion of
samples above ORT (loss of yield) decreases (R2 = 0.56, p < 0.05) (Supple-
mentary Fig. S10c). The amplitudes of the left slope and right slope of
inverted-U exhibit an inverse correlation with ORT. This suggests that the
intensity of yield loss (right slope) increases as ORT level increases. More-
over, as ORT grows, yield loss intensity (left slope) decreases (Supplemen-
tary Fig. S10d).

ENSO and its impact on Indian summer monsoon and rice
production
From both sides of the ORT, Kharif monsoon rice yield loss in India is not
limited to just excess rainfall (wetter conditions), but also due to lack of
rainfall (drier conditions). The Indian monsoon is directly linked to the El
Niño Southern Oscillation (ENSO)29, and thus El Niño events can lead to
reduced Kharif monsoon rice production in India due to low rainfall or
drought conditions.TheElNiñophases that caused suchconditions in India
include 1991, 1997, 2002, 2009, and 2015, which were years with drought
conditions; The La Niña phases include years of 1998, 1999, 2007, and 2010
(Fig. 3a). There is prominently negative relationship between the mean
rainfall and the ONI values, indicating the drought conditions under El
Niño andwetter conditions under LaNiña (r = 0.49, p < 0.01) (Fig. 3b). Rice
yield change has been improved during the La Niña years, which are
characterized by adequate rainfall in the years 1999, 2007, 2008, and
201030–32. These relationships also reflect the high association between the
Oceanic Nino Index values and the estimated RYC (r =−0.61, p < 0.001)
(Fig. 3a, c).

Discussion and conclusion
This research reveals the regional variations in the nonlinear connections
between rainfall andKharif monsoon rice yield across India. The growth, as
well as the prosperity and maturation of rice yield, depends on the water
availability during growing seasons regulated by climate variables, parti-
cularly rainfall. On the one hand, excessive rainfall may cause flooding33,34

and waterlogging35,36, leading to loss of crops by reducing the nitrogen
available for leaching1, and damage to the soil structure. On the other hand,
insufficient rainfall can result in drought conditions, causing stress on the
plant and reducing rice yield37. Notably, we identified the optimal rainfall
thresholds (ORTs) both nationwide and by state based on the district-level
data. The identification of ORT can be considered as a diagnostic tool for
understanding the water demand and supply of crops under climate
variability, ensuring healthy growth andmaximumyield in a specific region
as well as for the whole country.

In this study, we found that in areas with dry conditions where water
demand is notmet by rainfall, there is a positive linear relationship between
rice yield and rainfall (Supplementary Fig. 8d, k, m–o, q, r). Rice yield
increased as rainfall increased until it reached the optimum threshold
beyond which further increase in rainfall did not result in a corresponding
increase of rice yield. When exceeding this threshold, the excess rainfall
becomes surplus, causing stress for crop growth anddevelopment,which on
the contrary lead to a decline in yield8. This nonlinear relationshipmanifests
as an inverted-U shaped scatter plot,which is observed in heavy rain areas of
India (Supplementary Fig. 8b, c, e, h, I, j, l, p, s, t).

Nationwide, the collective ORT stands at 1621 ± 34mm. Notably,
89.25% of regions experience rainfall levels below this threshold, while
10.75% witness rainfall exceeding the ORT. From region to region, the
ORTs vary between 544 ± 87mm and 2,775 ± 106mm. Out of 20 states in
India, 14 states have recognized ORTs. Specifically, for Assam, Bihar,
Gujarat, Jharkhand, Karnataka, Kerala, Maharashtra, Tamil Nadu, Uttar-
akhand, and West Bengal, the rice crop yields experience a gradual decline
beyond the ORT. During the growing season, Andhra Pradesh, Himachal
Pradesh, Punjab, and Rajasthan experience rainfall levels below 1800mm,
resulting in an absence of the optimal threshold point (U-shaped slope).
This suggests that rice in these regions require additionalwater beyondwhat
is provided by rainfall during the growing season to meet their water needs
for optimal growth and yield. ORTs states are positioned along the primary
pathways of the southwest and southeast branches of the Indian summer
monsoon, receiving significantly higher rainfall during the cultivation sea-
son compared to other states in the country (Supplementary Figs. 3 and 4).
Generally, a total of 1200–1400mmofwater is required during the periodof
paddy growth23. The ORTs for Assam, Bihar, and Uttarakhand were
1485mm, 1205mm, and 1197mm, respectively. These three states had
received up to 3200mm of rainfall during their growth period (Supple-
mentary Fig. 8). The geographical conditions of the region, specifically the
presence of the Himalayas, play a role in the heavy rainfall experienced by
the states of Assam, Bihar, andUttarakhand. TheHimalayas act as a natural
barrier, preventing the southwest and southeast branches of the Indian
summer monsoon from crossing the boundary38. As a result, the states
experience heavy orographic rainfall.

During the monsoon season, heavy rainfall may cause devastating
floods and affect rice production39. Some areas, such as North Bihar, face a
high risk of monsoon-related flooding owing to their geographical posi-
tioning at the convergence of multiple rivers including the Mahananda
River, Koshi River, Bagmati River, Burhi Gandak River, and Gandak that
originate in Nepal and flow into the state (Supplementary Fig. 7). The steep

Fig. 2 | Modeling results of response of crop yield change of Kharif monsoon rice
to rainfall. a Response of Kharif monsoon rice yield to the cumulative rainfall
(June–November) from 1990–2017 and identification of optimum rainfall threshold

(ORT) over India. bAssociation between growing season rainfall and ORT over the
14 Indian states with identified thresholds.
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gradient of these rivers along the floodplain of the Brahmaputra River leads
to a high rate of waterflowand runoff, which can causewidespreadflooding
during heavy rainfall. The construction of over 3000 kmof embankments in
Bihar has been criticized for trapping sediments and hence exacerbating
floods in the state40, despite their initial intention of protecting agricultural
land. TheORT forWest Bengal is 1816mm.About 23% of observations fall
above this threshold and their yield decreases up to 20% (Supplementary
Fig. 8t). The southern part of West Bengal falls under the lower Gangetic
plain, where there are abundant rivers and a wide floodplain. This area
serves as the initial impact zone for the southeastmonsoon branch41. This is
why the maximum rainfall during the monsoon season goes above
4000mmduring the growing period and a wide area of paddy is affected by
floods. Another reason is that in recent times the large area of paddy has
been converted to fish farming42, which increases the moisture of the sur-
rounding croplands and cannot drain excess water from the paddy lands
resulting in accumulation of water in the fields, leading to loss of soil
nutrients and fertilizer from the soil which harms the production43.

The rainfall effects on yield reflect the different physiological and
environmental processes of crop growth and yield formation27. Typically, a
lack of knowledge about the demand and supply of water in the growing
season leads to a decline in crop health as well as production. This infor-
mation can help farmers in making informed decisions on crop manage-
ment practices and in improving crop productivity. The regional variation
of the ORT for rice production in India provides new information for
improving the efficiency of rice farming during monsoon seasons and
helping farmers determine how to cope with climate change by managing
rice cultivationunder rainfall in their specific regions, leading tobetter yields
and increased overall production. Furthermore, our analysis comes with
some limitations that the production of ricewill be influencedby a variety of

controlling factors, such as technical advancement, international markets,
and governmental regulations, which we did not consider in our model.

The ENSO cycle includes two extreme phases: 1) El Nino (warm
central and eastern PacificOcean surface) that canweaken Indianmonsoon
with drought, and 2) La Nina (cool central and eastern Pacific Ocean sur-
face) that is associated with increased rainfall. Our research demonstrated
the relationships between rainfall and ENSO (Fig. 3a, b), which is further
shown to be related to rice yield. Although studies suggested that there is a
weakening monsoon in India due to the warm ENSO event17, the impacts
from such events remain evident in our analysis (Fig. 3c). The detection of
the event years, along with the optimal rainfall thresholds, can help better
plan rice growing and harvesting practices in advance.

Climate threats aremore serious indevelopingnationsbecause theyare
more reliant on agriculture and have less access to resources and
technology44. Between 1950 and 2015, the frequency of catastrophic climatic
events (such as floods, droughts, and cyclones) in India increased, and it
seems unlikely that the amount of rainfall will altermuch anytime soon45,46.
Despite an increase in irrigation infrastructure, Indian agriculture, parti-
cularly rice production, remains reliant on the monsoons11. The National
Innovations on Climate Resilient Agriculture (NICRA) project was started
by the Indian Council of Agriculture Research (ICAR) in 2011 to enhance
the resilience of agriculture (including crops, livestock, and fisheries)
through strategic research, technology demonstration, and collaborations
with state agricultural universities, Krishi Vigyan Kendras (KVKs), and
non-governmental organizations (NGOs)45,47. Our study on how the crops
react to the timing or distribution of the monsoon can provide critical
refence for farmers to manage climate risks with improvement in agri-
cultural practices, such as the use of stress-tolerant crops, modifications to
planting dates, and input applications (e.g., irrigation and fertilizer), and

Fig. 3 | Relationships between ENSO events,
rainfall, and crop yield of Kharif monsoon rice.
a The list of El Nino, La Nina, and neutral years of
ENSO from 1990 to 2017, b Correlation between
growing season spatial average of rainfall over India
and Oceanic Nino Index (ONI), c Correlation
between crop yield change of Kharif monsoon rice
and ONI values annually.
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techniques for soil and water conservation, are typically relied upon by
farmers to manage climate risks.

Materials and methods
Data acquisition
Rice in India is annually grown in three seasons, including Kharif monsoon
season during August to November, Rabi season (winter rice) during
December to April and, Zaid season (summer rice) with irrigation practices
duringMay to July. Among the three types, Kharifmonsoon rice is themost
extensive and dominant crop, accounting for 85% of total rice production3.
We obtained data of harvested area, crop production, and crop yield for
Kharifmonsoon rice at the district level for India during 1990–2017, relying
on informationavailable fromthe InternationalCropsResearch Institute for
the Semi-Arid Tropics (ICRISAT) database (http://data.icrisat.org/dld/src/
crops.html). This database compiles information from numerous sources,
including Agricultural Censuses, State Directories of Agriculture, State
Bureaus of Economics and Statistics, State Planning Departments, and
government papers48. The lowest level of disaggregation, for which agri-
cultural statistics are routinely accessible throughout the country, is a dis-
trict, which is an administrative unit under the state.

We obtained observed daily gridded rainfall (mm/day) and air tem-
perature (°C) data at the spatial resolutions of 0.25° × 0.25° and 1° × 1°,
respectively, over the period of June–November from 1990 to 2017. The
climate datawere prepared by the IndiaMeteorological Department (IMD)
and developed based on information acquired by more than 6000 stations
across the country using maps of 1993 district boundaries49. The gridded
weather data were rescaled to the district level by calculating the area-
weighted mean of grid values in each district. June and July rainfall were
incorporated to extend the growing season from August to November, a
duration influenced by the selected rice variety and the specific cultivation
area. In the state of Kerala, for example, themonsoon season often begins in
the first week of June, but rice is not planted until late July or early August.
However, paddy fields must be prepared with a surface submerged in water
before rice can be transplanted, and India’s rainfall in June and July con-
siderably aids in this preparation50. Finally, we obtained data on theOceanic
Nino Index (ONI), a widely used measure to monitor the El Niño and La
Niña events in the tropical Pacific Ocean (https://ggweather.com/enso/
oni.htm).

Estimating the impacts of rainfall on Kharif monsoon rice yield
To measure the impact of rainfall trends on Kharif monsoon rice yield, we
used amultivariate log-linear regressionmixed-effectmodel3,4,24,26,51.Mixed-
effect models have several advantages over fixed-effect models, particularly
when handling data with a hierarchical or clustered structure where
observations are not independentwithin each cluster or group.Mixed-effect
models can capture both within-group and between-group variances that
help improve the accuracyof parameter estimation and tolerateunevendata
and have greater flexibility in handlingmissing data. Themodel equation is
shown as follows.

Counter factual model : logðyitÞ ¼ β0 þ γi þ f iðtÞ þ f i t
2

� �þ εit ð1Þ

Full model : logðyitÞ ¼ β0 þ γi þ f i tð Þ þ f i t
2

� �þ βXit þ εit ð2Þ

Where yit is the estimated yield (kg ha−1) of rice for state i in year t; β0 is the
global intercept; γi is the random intercept for all states, which controls for
the time-invariant difference between locations such as soil type; fi(t) and
fi(t

2) are the time controls, which account time-varying differences among
the locations; β is the vector of coefficients and X is the vector of rainfall
(R, R2); εit is the residual error that captures the unobservable random effect.
As rainfall varies location-wise, we modeled location as a random-effect
variable. The variables of year (Y), rainfall (R), and their squares (Y2, R2)
were modeled as fixed-effect variables. Quadratic terms of rainfall were
adopted to capture the non-linear effect of extreme weather conditions,
which can damage crops and hence affect the crop yield4,24,51.

To account for the effect of climate trends on rice yield, we calculated
the percentage of relative yield change (RYC) between the predicted yields
from our full regression model ðŷFÞ with rainfall trends and predicted yield
from counterfactual (i.e., baseline) scenario ðŷBÞ without long-run rainfall3.

RYC ¼ ŷF � ŷB
ŷB

× 100% ð3Þ

Wemultiplied the area of rice planted by themodel-derived yield from
the full model to estimate the net production balance.

Delimiting the optimum rainfall threshold for Kharif monsoon
rice yield
To quantify the optimum rainfall threshold (ORT), beyondwhich rice yield
can be negatively affected by the increasing level of rainfall, we used the
segment regression method52. Below and above this ORT, rainfall is
assumed to be suboptimal for rice production. The yield loss in both
situations was due to drought conditions and wet conditions, respectively.
Segment regression is a machine learning technique that aims to fit a
regression model to data that can be divided into separate segments. This
approach can be useful when the underlying relationship between the
explanatory and response variables is not linear or is heterogeneous across
the entire dataset52. By fitting separate regression models to different seg-
ments, the overall model can capture complex relationships and improve
the accuracy of the predictions. The least squares approach was employed
separately to each segment, through which two trend lines are created to fit
the data as closely as possible while minimizing the sum of squares of the
differences between actual (y) and predicted (ŷ) values of the observations
(i.e., the response variable). Here, we assessed the effectiveness of rainfall
(explanatory variable) on the RYC (response variable) when there exists a
value within the range of the rainfall, where the effect of the rainfall is
expected to change53,54.

yi ¼ β1zi þ β2 zi � ψ
� �

þ þ γIðzi > ψÞ� ð4Þ

Where yi is the response variable, which in this context is RYC for obser-
vation i, zi is the predictor variable (rainfall) for observation i; β1 This is the
slope parameter for the segment before the breakpoint ψ. It determines the
effect of rainfall on the RYC before the breakpoint; β2 is the difference in
slope parameter. It represents the change in the effect of rainfall on the RYC
after the breakpoint ψ; ψ is the estimated breakpoint between the different
segments. It represents the value of rainfall at which the relationship
between rainfall and RYC changes; (zi− ψ)+ capture the positive deviation
fromthebreakpointψ, ensuring that the segmented term is only activewhen
zi > ψ, I(zi > ψ)

− is an indicator function that equals 1 when zi > ψ and 0
otherwise, ensuring that the term γ is only activate when zi > ψ.

Thismetric of sensitivitymeasures howmuchextent towhich rice yield
changes with increasing rainfall above the ORT relative to that with
decreasing rainfall below the ORT, namely relative response of rice yields to
excessive rainfall compared with rainfall deficit. The estimated sensitivity of
RYC to rainfall is based on the the rising (left) slope Slopeleft and the
decreasing (right) slope Sloperight, with the equation as follows.

Sensitivity ¼
100%× Sloperight � Slopeleft

� �

Slopeleft
ð5Þ

Relating crop yield in response to rainfall to ENSO events
We calculated the ONI value as the three-month mean of the sea surface
temperature (SST) anomaly in the region extending 5°S-5°N and
120°W–170°W.We defined thresholds that signal the El Niño and La Niña
events and categorized their intensity level as follows. El Niño occurs when
the ONI values are above +0.5σ and La Niña occurs when below −0.5σ,
where σ denotes the standard deviation. Here, the three-month (May–July)
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average values of the ONIwere used to examine the impacts of El Niño and
La Niña on Kharif monsoon rice yield.

Data availability
Thedata analyzed in this study is available onZenodo at https://zenodo.org/
[https://doi.org/10.5281/zenodo.10958118].
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